
The Future of SBOMs
As required by the Executive Order, the National Telecommunications and Information

Administration (NTIA) published The Minimum Elements For a Software Bill of Materials

in 2021. These include:

Minimum Elements
Data Fields

Document baseline information about each component that should be tracked: Supplier,

Component Name, Version of the Component, Other Unique Identifiers, Dependency

Relationship, Author of SBOM Data, and Timestamp.

Automation Support

Automatic generation and machine-readability to allow for scaling across the software

ecosystem. Data formats used to generate and consume SBOMs include SPDX,

CycloneDX, and SWID tags.

Practices and Processes

A number of items that focus on the mechanics of SBOM use should be addressed in

any policy, contract, or arrangement to ask for or provide SBOMs, including Frequency,

Depth, Known Unknowns, Distribution and Delivery, Access Control, and

Accommodation of Mistakes

Future Requirements
Additionally, the document provides a preview of how these “minimum requirements” may

evolve. This includes the potential future SBOM requirements for SBOM Integrity and

Authenticity, SBOM for Cloud-based Software and Software-as-a-Service, Component

Relationships, and Vulnerability and Exploitability in Dependencies.

Legacy Software and Binary Analysis

The NTIA document also specifically notes that source code may not be available for all

legacy software. In those cases, only the object code available for SBOM generation and

binary analysis tools can be used to better understand the components and dependencies

in the software in question.

Emerging Software Supply Chain Concepts

NIST continues work on cybersecurity supply chain risk management and to update its

standards concerning the EO and the Secure Software Development Framework. Security

and development teams should expect NIST to build off the “minimum requirements” and

develop “Foundational, Sustaining, and Enhancing” recommendations for SBOM, Vendor

Risk Assessments, Open Source Software Controls, and Vulnerability Management

Practices. The requirements are expected to be “risk based”, with different requirements

based on the criticality of the software, the information it manages, and the threat

environment.

Operationalizing SBOMs
As previously noted, automation is required to produce accurate SBOM at scale. Early in
the SDLC this can include integration with development tools and issue tracking software.
Later in the development process, integration is required with build systems; vulnerability
management, and incident response. The most critical point of integration is just prior to
release or deployment of software and containers. This requires binary analysis.

NIST Software Supply Chain Security Guidance website illustrates how a SBOM
illustrates an example of how an SBOM may be assembled across the SDLC, shown below.
The pale green boxes follow software and components as they change over time. The
SBOM components of “Software as specified” and “Software as built” (where open-source
SCA tools have traditionally focused) can differ significantly from the SBOM components
of “Software as distributed”.

For example, a number of other items are often packaged with the software to assist with
installation: installer software, separate installation libraries, or even an entire container.
Vulnerabilities or tampering within these items can introduce the same security risks. The
SBOM created during the final build (i.e.“Software as built”) will not list these components,
leaving organizations blind to the risks.

“Software as distributed” – the binary and package – is the release that matters from a
security standpoint. Only binary analysis solutions can produce an accurate and complete
“as distributed” SBOM.

Additionally, complete and accurate SBOMs are valuable tools for determining the impact
of attacks like Solarwinds or components with newly discovered supply chain risks such
as the Apache log4j vulnerability. Binary analysis simplifies the effort in identifying all of
the transitive dependencies included, regardless of how deeply the components are
layered within the application.

Understanding the
Requirement for
Software Bills of
Material in Executive
Order 14028

R E V E R S I N G L A B S
W H I T E P A P E R

The Attack on Software Supply Chain

In December 2020, FireEye researchers discovered “a supply chain attack trojanizing

SolarWinds Orion business software updates”. The backdoor in Orion – a platform for

centralized monitoring and management of IT infrastructure – allowed the attackers full

administrative access to Orion customers’ infrastructure. The attack affected over 100

private sector entities and at least 9 Federal agencies, including the Departments of

Defense, Commerce, Energy, Justice, Homeland Security, State, Treasure, and the National

Institute of Health.

While the SolarWinds attacks involved Russian nation state actors planting malicious code

in software updates, similar outcomes can result from exploiting vulnerabilities in widely

used applications. Attackers infiltrated the development environment and altered the

behavior of CodeCov, a software auditing tool for developers, to collect developer

credentials needed for the next stage of their attack. Four zero day vulnerabilities in

Microsoft Exchange Server provided attackers with the ability to steal sensitive

information, install malware, and insert backdoors on thousands of organizations.

Cybersecurity Executive Order 14028

While there have been growing concerns over the security of software used by the

government for years, the SolarWinds and Microsoft attacks prompted action. In May,

2021 the President issued an Executive Order (EO) on Improving the Nation’s

Cybersecurity. The order requires private sector organizations to "ensure its products are

built and operate securely, and partner with the Federal Government to foster a more

secure cyberspace.”

The EO requires the National Institute of Standards and Technology (NIST) to publish

standards for secure software development including criteria for secure software

development environments, using automated tools to identify vulnerabilities in code,

maintaining accurate and up-to-date data, provenance (i.e., origin) of software code or

components, and providing a Software Bill of Materials (SBOM) to purchasers of software.

Why the EO Includes SBOM Requirements
Awareness of a risk is fundamental to mitigating that risk. A Software Bill of Materials is a

listing of all components and dependencies in an application or system, including open

source and commercial components. Having a list of every software component and

dependency simplifies the effort of:

• Mapping known vulnerabilities to components to determine the level of risk

• Tracking down which software and suppliers are affected when a vulnerability like

Log4j occurs

• Pinpointing the location of suspicious software behavior changes, injected malware

and other indicators of software tampering

A 2021 study found that the average application included over 500 open source

components and that 84% of the applications included at least one vulnerable open source

component. The latter figure is not surprising, as thousands of new vulnerabilities are

disclosed in open source components each year.

A complete and accurate Software Bill of Materials is essential to provide vendors and

customers with visibility into the risk within an application or supply chain. Without insight

to vulnerable, malicious or compromised components, organizations cannot defend

against these attack vectors or adequately assess risk.

The Executive Order acknowledges risk in the supply chain from third-party components

and requires any organization providing software to the Federal Government to also provide

(or publish on a public website) a Software Bill of Materials. In response to this, other

secure development standards have also included SBOM requirements, including:

• NIST Special Publication 800-161 Rev1: Cybersecurity Supply Chain Risk

Management Practices for Systems and Organizations. The publication instructs

Federal Agencies and Departments to “Establish a governance capability for

managing and monitoring components of embedded software to manage risk

across the enterprise (e.g., SBOMs paired with criticality, vulnerability, threat,

and exploitability to make this more automated).” This governance is a

foundational practice, critical to successfully interacting with suppliers and

improving cybersecurity supply chain risk management.

• NIST Publication 800-218: Secure Software Development Framework (SSDF).

800-218 requires organizations to

- “Collect, maintain, and share provenance data for all components and other

dependencies of each software release (e.g., in a software bill of materials

[SBOM]).” (PS.3.2)

- Obtain provenance information (e.g., SBOM, source composition analysis,

binary software composition analysis) for each software component,

and analyze that information to better assess the risk that the component

may introduce. (PW.4.1)

- “Check code for backdoors and other malicious content” (PW.7.2)

In short, every software supplier to federal agencies now has two deliverables —

the software and a Software Bill of Materials.

How SBOM Have Evolved (Your old one may not be
sufficient)
SBOMs have been around for 20 years, at first coinciding with the growth and adoption of

open source software. When software developers first used open source components, the

primary concern was complying with sometimes confusing or limiting license agreements

that represented an intellectual property risk.

Open source can be issued under one of hundreds of licenses, or under no license at all.

Some licenses require developers to link to the code and others require that proper

attribution be provided. Some high-profile lawsuits and settlements related to violating

open source license obligations, including Free Software Foundation (FSF) vs Cisco in

2009 and CoKinetic Systems vs Panaso nic Avionics in 2017, provided the incentive

needed to adopt tools that could identify open source components from build manifests

and other development tooling and enumerate the licenses associated with them – with

appropriate policy definition and reporting so that legal and compliance teams could limit

licensing risks.

In contrast to what is now required under the Executive Order, organizations rarely – if ever

– shared SBOMs with their customers. They viewed the composition of their software as

their intellectual property. SBOM generation methods that grew out of those early

circumstances can struggle with the new shift in focus, where transparency into all parts of

the software, more insight into the release and distribution processes, and data sharing

across organizations are necessary for managing risk.

SBOM Generation Methodologies

Generating an SBOM manually is time consuming and inaccurate. Software development

teams using spreadsheets or shared documents rarely are aware of each component and

subcomponent used over the course of the development cycle, and versions can change

each day. The class of tools that automates creating an SBOM is known as Source

Composition Analysis (SCA).

The most common approach used by SCA to identify components is Manifest Parsing.

This works by interrogating build manifests and package managers during the build

process to identify which open source components have been declared by development as

required (“declared dependencies”). It then determines other “undeclared dependencies”

are required by listed components. Once the SBOM is complete, it maps the components

to databases of the licenses under which each component was published.

While this approach appears accurate (the components listed as required by development

are those listed in the SBOM), Manifest Parsing has several technical shortcomings

• Components statically linked or added directly to the code by developers will not

be declared by the manifest

• Imprecise declarations (e.g., “version 2 or higher”, “latest”) may generate the wrong

version number in the SBOM. Since vulnerabilities affect only specific versions, this

can lead to false positives and false negatives

• Components embedded within software containers are not part of a build manifest

• Manifest parsing is unusable with programming languages such as C and C++.

This can also make it impossible to automatically generate reliable SBOM for

legacy software.

The Future of SBOMs
As required by the Executive Order, the National Telecommunications and Information

Administration (NTIA) published The Minimum Elements For a Software Bill of Materials

in 2021. These include:

Minimum Elements
Data Fields

Document baseline information about each component that should be tracked: Supplier,

Component Name, Version of the Component, Other Unique Identifiers, Dependency

Relationship, Author of SBOM Data, and Timestamp.

Automation Support

Automatic generation and machine-readability to allow for scaling across the software

ecosystem. Data formats used to generate and consume SBOMs include SPDX,

CycloneDX, and SWID tags.

Practices and Processes

A number of items that focus on the mechanics of SBOM use should be addressed in

any policy, contract, or arrangement to ask for or provide SBOMs, including Frequency,

Depth, Known Unknowns, Distribution and Delivery, Access Control, and

Accommodation of Mistakes

Future Requirements
Additionally, the document provides a preview of how these “minimum requirements” may

evolve. This includes the potential future SBOM requirements for SBOM Integrity and

Authenticity, SBOM for Cloud-based Software and Software-as-a-Service, Component

Relationships, and Vulnerability and Exploitability in Dependencies.

Legacy Software and Binary Analysis

The NTIA document also specifically notes that source code may not be available for all

legacy software. In those cases, only the object code available for SBOM generation and

binary analysis tools can be used to better understand the components and dependencies

in the software in question.

Emerging Software Supply Chain Concepts

NIST continues work on cybersecurity supply chain risk management and to update its

standards concerning the EO and the Secure Software Development Framework. Security

and development teams should expect NIST to build off the “minimum requirements” and

develop “Foundational, Sustaining, and Enhancing” recommendations for SBOM, Vendor

Risk Assessments, Open Source Software Controls, and Vulnerability Management

Practices. The requirements are expected to be “risk based”, with different requirements

based on the criticality of the software, the information it manages, and the threat

environment.

Operationalizing SBOMs
As previously noted, automation is required to produce accurate SBOM at scale. Early in
the SDLC this can include integration with development tools and issue tracking software.
Later in the development process, integration is required with build systems; vulnerability
management, and incident response. The most critical point of integration is just prior to
release or deployment of software and containers. This requires binary analysis.

NIST Software Supply Chain Security Guidance website illustrates how a SBOM
illustrates an example of how an SBOM may be assembled across the SDLC, shown below.
The pale green boxes follow software and components as they change over time. The
SBOM components of “Software as specified” and “Software as built” (where open-source
SCA tools have traditionally focused) can differ significantly from the SBOM components
of “Software as distributed”.

For example, a number of other items are often packaged with the software to assist with
installation: installer software, separate installation libraries, or even an entire container.
Vulnerabilities or tampering within these items can introduce the same security risks. The
SBOM created during the final build (i.e.“Software as built”) will not list these components,
leaving organizations blind to the risks.

“Software as distributed” – the binary and package – is the release that matters from a
security standpoint. Only binary analysis solutions can produce an accurate and complete
“as distributed” SBOM.

Additionally, complete and accurate SBOMs are valuable tools for determining the impact
of attacks like Solarwinds or components with newly discovered supply chain risks such
as the Apache log4j vulnerability. Binary analysis simplifies the effort in identifying all of
the transitive dependencies included, regardless of how deeply the components are
layered within the application.

02

Understanding
the Requirement for
Software Bills of Material
in Executive Order 14028

R E V E R S I N G L A B S
W H I T E P A P E R

https://www.mandiant.com/resources/blog/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://fedscoop.com/solarwinds-recap-federal-agencies-caught-orion-breach/
https://www.reversinglabs.com/blog/it-only-takes-one-line-of-code-to-ruin-your-day
https://www.zdnet.com/article/update-immediately-microsoft-rushes-out-patches-for-exchange-server-zero-day-attacks/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

The Attack on Software Supply Chain

In December 2020, FireEye researchers discovered “a supply chain attack trojanizing

SolarWinds Orion business software updates”. The backdoor in Orion – a platform for

centralized monitoring and management of IT infrastructure – allowed the attackers full

administrative access to Orion customers’ infrastructure. The attack affected over 100

private sector entities and at least 9 Federal agencies, including the Departments of

Defense, Commerce, Energy, Justice, Homeland Security, State, Treasure, and the National

Institute of Health.

While the SolarWinds attacks involved Russian nation state actors planting malicious code

in software updates, similar outcomes can result from exploiting vulnerabilities in widely

used applications. Attackers infiltrated the development environment and altered the

behavior of CodeCov, a software auditing tool for developers, to collect developer

credentials needed for the next stage of their attack. Four zero day vulnerabilities in

Microsoft Exchange Server provided attackers with the ability to steal sensitive

information, install malware, and insert backdoors on thousands of organizations.

Cybersecurity Executive Order 14028

While there have been growing concerns over the security of software used by the

government for years, the SolarWinds and Microsoft attacks prompted action. In May,

2021 the President issued an Executive Order (EO) on Improving the Nation’s

Cybersecurity. The order requires private sector organizations to "ensure its products are

built and operate securely, and partner with the Federal Government to foster a more

secure cyberspace.”

The EO requires the National Institute of Standards and Technology (NIST) to publish

standards for secure software development including criteria for secure software

development environments, using automated tools to identify vulnerabilities in code,

maintaining accurate and up-to-date data, provenance (i.e., origin) of software code or

components, and providing a Software Bill of Materials (SBOM) to purchasers of software.

Why the EO Includes SBOM Requirements
Awareness of a risk is fundamental to mitigating that risk. A Software Bill of Materials is a

listing of all components and dependencies in an application or system, including open

source and commercial components. Having a list of every software component and

dependency simplifies the effort of:

• Mapping known vulnerabilities to components to determine the level of risk

• Tracking down which software and suppliers are affected when a vulnerability like

Log4j occurs

• Pinpointing the location of suspicious software behavior changes, injected malware

and other indicators of software tampering

A 2021 study found that the average application included over 500 open source

components and that 84% of the applications included at least one vulnerable open source

component. The latter figure is not surprising, as thousands of new vulnerabilities are

disclosed in open source components each year.

A complete and accurate Software Bill of Materials is essential to provide vendors and

customers with visibility into the risk within an application or supply chain. Without insight

to vulnerable, malicious or compromised components, organizations cannot defend

against these attack vectors or adequately assess risk.

The Executive Order acknowledges risk in the supply chain from third-party components

and requires any organization providing software to the Federal Government to also provide

(or publish on a public website) a Software Bill of Materials. In response to this, other

secure development standards have also included SBOM requirements, including:

• NIST Special Publication 800-161 Rev1: Cybersecurity Supply Chain Risk

Management Practices for Systems and Organizations. The publication instructs

Federal Agencies and Departments to “Establish a governance capability for

managing and monitoring components of embedded software to manage risk

across the enterprise (e.g., SBOMs paired with criticality, vulnerability, threat,

and exploitability to make this more automated).” This governance is a

foundational practice, critical to successfully interacting with suppliers and

improving cybersecurity supply chain risk management.

• NIST Publication 800-218: Secure Software Development Framework (SSDF).

800-218 requires organizations to

- “Collect, maintain, and share provenance data for all components and other

dependencies of each software release (e.g., in a software bill of materials

[SBOM]).” (PS.3.2)

- Obtain provenance information (e.g., SBOM, source composition analysis,

binary software composition analysis) for each software component,

and analyze that information to better assess the risk that the component

may introduce. (PW.4.1)

- “Check code for backdoors and other malicious content” (PW.7.2)

In short, every software supplier to federal agencies now has two deliverables —

the software and a Software Bill of Materials.

How SBOM Have Evolved (Your old one may not be
sufficient)
SBOMs have been around for 20 years, at first coinciding with the growth and adoption of

open source software. When software developers first used open source components, the

primary concern was complying with sometimes confusing or limiting license agreements

that represented an intellectual property risk.

Open source can be issued under one of hundreds of licenses, or under no license at all.

Some licenses require developers to link to the code and others require that proper

attribution be provided. Some high-profile lawsuits and settlements related to violating

open source license obligations, including Free Software Foundation (FSF) vs Cisco in

2009 and CoKinetic Systems vs Panaso nic Avionics in 2017, provided the incentive

needed to adopt tools that could identify open source components from build manifests

and other development tooling and enumerate the licenses associated with them – with

appropriate policy definition and reporting so that legal and compliance teams could limit

licensing risks.

In contrast to what is now required under the Executive Order, organizations rarely – if ever

– shared SBOMs with their customers. They viewed the composition of their software as

their intellectual property. SBOM generation methods that grew out of those early

circumstances can struggle with the new shift in focus, where transparency into all parts of

the software, more insight into the release and distribution processes, and data sharing

across organizations are necessary for managing risk.

SBOM Generation Methodologies

Generating an SBOM manually is time consuming and inaccurate. Software development

teams using spreadsheets or shared documents rarely are aware of each component and

subcomponent used over the course of the development cycle, and versions can change

each day. The class of tools that automates creating an SBOM is known as Source

Composition Analysis (SCA).

The most common approach used by SCA to identify components is Manifest Parsing.

This works by interrogating build manifests and package managers during the build

process to identify which open source components have been declared by development as

required (“declared dependencies”). It then determines other “undeclared dependencies”

are required by listed components. Once the SBOM is complete, it maps the components

to databases of the licenses under which each component was published.

While this approach appears accurate (the components listed as required by development

are those listed in the SBOM), Manifest Parsing has several technical shortcomings

• Components statically linked or added directly to the code by developers will not

be declared by the manifest

• Imprecise declarations (e.g., “version 2 or higher”, “latest”) may generate the wrong

version number in the SBOM. Since vulnerabilities affect only specific versions, this

can lead to false positives and false negatives

• Components embedded within software containers are not part of a build manifest

• Manifest parsing is unusable with programming languages such as C and C++.

This can also make it impossible to automatically generate reliable SBOM for

legacy software.

The Future of SBOMs
As required by the Executive Order, the National Telecommunications and Information

Administration (NTIA) published The Minimum Elements For a Software Bill of Materials

in 2021. These include:

Minimum Elements
Data Fields

Document baseline information about each component that should be tracked: Supplier,

Component Name, Version of the Component, Other Unique Identifiers, Dependency

Relationship, Author of SBOM Data, and Timestamp.

Automation Support

Automatic generation and machine-readability to allow for scaling across the software

ecosystem. Data formats used to generate and consume SBOMs include SPDX,

CycloneDX, and SWID tags.

Practices and Processes

A number of items that focus on the mechanics of SBOM use should be addressed in

any policy, contract, or arrangement to ask for or provide SBOMs, including Frequency,

Depth, Known Unknowns, Distribution and Delivery, Access Control, and

Accommodation of Mistakes

Future Requirements
Additionally, the document provides a preview of how these “minimum requirements” may

evolve. This includes the potential future SBOM requirements for SBOM Integrity and

Authenticity, SBOM for Cloud-based Software and Software-as-a-Service, Component

Relationships, and Vulnerability and Exploitability in Dependencies.

Legacy Software and Binary Analysis

The NTIA document also specifically notes that source code may not be available for all

legacy software. In those cases, only the object code available for SBOM generation and

binary analysis tools can be used to better understand the components and dependencies

in the software in question.

Emerging Software Supply Chain Concepts

NIST continues work on cybersecurity supply chain risk management and to update its

standards concerning the EO and the Secure Software Development Framework. Security

and development teams should expect NIST to build off the “minimum requirements” and

develop “Foundational, Sustaining, and Enhancing” recommendations for SBOM, Vendor

Risk Assessments, Open Source Software Controls, and Vulnerability Management

Practices. The requirements are expected to be “risk based”, with different requirements

based on the criticality of the software, the information it manages, and the threat

environment.

Operationalizing SBOMs
As previously noted, automation is required to produce accurate SBOM at scale. Early in
the SDLC this can include integration with development tools and issue tracking software.
Later in the development process, integration is required with build systems; vulnerability
management, and incident response. The most critical point of integration is just prior to
release or deployment of software and containers. This requires binary analysis.

NIST Software Supply Chain Security Guidance website illustrates how a SBOM
illustrates an example of how an SBOM may be assembled across the SDLC, shown below.
The pale green boxes follow software and components as they change over time. The
SBOM components of “Software as specified” and “Software as built” (where open-source
SCA tools have traditionally focused) can differ significantly from the SBOM components
of “Software as distributed”.

For example, a number of other items are often packaged with the software to assist with
installation: installer software, separate installation libraries, or even an entire container.
Vulnerabilities or tampering within these items can introduce the same security risks. The
SBOM created during the final build (i.e.“Software as built”) will not list these components,
leaving organizations blind to the risks.

“Software as distributed” – the binary and package – is the release that matters from a
security standpoint. Only binary analysis solutions can produce an accurate and complete
“as distributed” SBOM.

Additionally, complete and accurate SBOMs are valuable tools for determining the impact
of attacks like Solarwinds or components with newly discovered supply chain risks such
as the Apache log4j vulnerability. Binary analysis simplifies the effort in identifying all of
the transitive dependencies included, regardless of how deeply the components are
layered within the application.

03

Understanding
the Requirement for
Software Bills of Material
in Executive Order 14028

R E V E R S I N G L A B S
W H I T E P A P E R

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161r1.pdf
https://www.darkreading.com/application-security/dependency-problems-increase-for-open-source-components/d/d-id/1340665
https://www.darkreading.com/application-security/dependency-problems-increase-for-open-source-components/d/d-id/1340665
https://csrc.nist.gov/publications/detail/sp/800-218/final

The Attack on Software Supply Chain

In December 2020, FireEye researchers discovered “a supply chain attack trojanizing

SolarWinds Orion business software updates”. The backdoor in Orion – a platform for

centralized monitoring and management of IT infrastructure – allowed the attackers full

administrative access to Orion customers’ infrastructure. The attack affected over 100

private sector entities and at least 9 Federal agencies, including the Departments of

Defense, Commerce, Energy, Justice, Homeland Security, State, Treasure, and the National

Institute of Health.

While the SolarWinds attacks involved Russian nation state actors planting malicious code

in software updates, similar outcomes can result from exploiting vulnerabilities in widely

used applications. Attackers infiltrated the development environment and altered the

behavior of CodeCov, a software auditing tool for developers, to collect developer

credentials needed for the next stage of their attack. Four zero day vulnerabilities in

Microsoft Exchange Server provided attackers with the ability to steal sensitive

information, install malware, and insert backdoors on thousands of organizations.

Cybersecurity Executive Order 14028

While there have been growing concerns over the security of software used by the

government for years, the SolarWinds and Microsoft attacks prompted action. In May,

2021 the President issued an Executive Order (EO) on Improving the Nation’s

Cybersecurity. The order requires private sector organizations to "ensure its products are

built and operate securely, and partner with the Federal Government to foster a more

secure cyberspace.”

The EO requires the National Institute of Standards and Technology (NIST) to publish

standards for secure software development including criteria for secure software

development environments, using automated tools to identify vulnerabilities in code,

maintaining accurate and up-to-date data, provenance (i.e., origin) of software code or

components, and providing a Software Bill of Materials (SBOM) to purchasers of software.

Why the EO Includes SBOM Requirements
Awareness of a risk is fundamental to mitigating that risk. A Software Bill of Materials is a

listing of all components and dependencies in an application or system, including open

source and commercial components. Having a list of every software component and

dependency simplifies the effort of:

• Mapping known vulnerabilities to components to determine the level of risk

• Tracking down which software and suppliers are affected when a vulnerability like

Log4j occurs

• Pinpointing the location of suspicious software behavior changes, injected malware

and other indicators of software tampering

A 2021 study found that the average application included over 500 open source

components and that 84% of the applications included at least one vulnerable open source

component. The latter figure is not surprising, as thousands of new vulnerabilities are

disclosed in open source components each year.

A complete and accurate Software Bill of Materials is essential to provide vendors and

customers with visibility into the risk within an application or supply chain. Without insight

to vulnerable, malicious or compromised components, organizations cannot defend

against these attack vectors or adequately assess risk.

The Executive Order acknowledges risk in the supply chain from third-party components

and requires any organization providing software to the Federal Government to also provide

(or publish on a public website) a Software Bill of Materials. In response to this, other

secure development standards have also included SBOM requirements, including:

• NIST Special Publication 800-161 Rev1: Cybersecurity Supply Chain Risk

Management Practices for Systems and Organizations. The publication instructs

Federal Agencies and Departments to “Establish a governance capability for

managing and monitoring components of embedded software to manage risk

across the enterprise (e.g., SBOMs paired with criticality, vulnerability, threat,

and exploitability to make this more automated).” This governance is a

foundational practice, critical to successfully interacting with suppliers and

improving cybersecurity supply chain risk management.

• NIST Publication 800-218: Secure Software Development Framework (SSDF).

800-218 requires organizations to

- “Collect, maintain, and share provenance data for all components and other

dependencies of each software release (e.g., in a software bill of materials

[SBOM]).” (PS.3.2)

- Obtain provenance information (e.g., SBOM, source composition analysis,

binary software composition analysis) for each software component,

and analyze that information to better assess the risk that the component

may introduce. (PW.4.1)

- “Check code for backdoors and other malicious content” (PW.7.2)

In short, every software supplier to federal agencies now has two deliverables —

the software and a Software Bill of Materials.

How SBOM Have Evolved (Your old one may not be
sufficient)
SBOMs have been around for 20 years, at first coinciding with the growth and adoption of

open source software. When software developers first used open source components, the

primary concern was complying with sometimes confusing or limiting license agreements

that represented an intellectual property risk.

Open source can be issued under one of hundreds of licenses, or under no license at all.

Some licenses require developers to link to the code and others require that proper

attribution be provided. Some high-profile lawsuits and settlements related to violating

open source license obligations, including Free Software Foundation (FSF) vs Cisco in

2009 and CoKinetic Systems vs Panaso nic Avionics in 2017, provided the incentive

needed to adopt tools that could identify open source components from build manifests

and other development tooling and enumerate the licenses associated with them – with

appropriate policy definition and reporting so that legal and compliance teams could limit

licensing risks.

In contrast to what is now required under the Executive Order, organizations rarely – if ever

– shared SBOMs with their customers. They viewed the composition of their software as

their intellectual property. SBOM generation methods that grew out of those early

circumstances can struggle with the new shift in focus, where transparency into all parts of

the software, more insight into the release and distribution processes, and data sharing

across organizations are necessary for managing risk.

SBOM Generation Methodologies

Generating an SBOM manually is time consuming and inaccurate. Software development

teams using spreadsheets or shared documents rarely are aware of each component and

subcomponent used over the course of the development cycle, and versions can change

each day. The class of tools that automates creating an SBOM is known as Source

Composition Analysis (SCA).

The most common approach used by SCA to identify components is Manifest Parsing.

This works by interrogating build manifests and package managers during the build

process to identify which open source components have been declared by development as

required (“declared dependencies”). It then determines other “undeclared dependencies”

are required by listed components. Once the SBOM is complete, it maps the components

to databases of the licenses under which each component was published.

While this approach appears accurate (the components listed as required by development

are those listed in the SBOM), Manifest Parsing has several technical shortcomings

• Components statically linked or added directly to the code by developers will not

be declared by the manifest

• Imprecise declarations (e.g., “version 2 or higher”, “latest”) may generate the wrong

version number in the SBOM. Since vulnerabilities affect only specific versions, this

can lead to false positives and false negatives

• Components embedded within software containers are not part of a build manifest

• Manifest parsing is unusable with programming languages such as C and C++.

This can also make it impossible to automatically generate reliable SBOM for

legacy software.

The Future of SBOMs
As required by the Executive Order, the National Telecommunications and Information

Administration (NTIA) published The Minimum Elements For a Software Bill of Materials

in 2021. These include:

Minimum Elements
Data Fields

Document baseline information about each component that should be tracked: Supplier,

Component Name, Version of the Component, Other Unique Identifiers, Dependency

Relationship, Author of SBOM Data, and Timestamp.

Automation Support

Automatic generation and machine-readability to allow for scaling across the software

ecosystem. Data formats used to generate and consume SBOMs include SPDX,

CycloneDX, and SWID tags.

Practices and Processes

A number of items that focus on the mechanics of SBOM use should be addressed in

any policy, contract, or arrangement to ask for or provide SBOMs, including Frequency,

Depth, Known Unknowns, Distribution and Delivery, Access Control, and

Accommodation of Mistakes

Future Requirements
Additionally, the document provides a preview of how these “minimum requirements” may

evolve. This includes the potential future SBOM requirements for SBOM Integrity and

Authenticity, SBOM for Cloud-based Software and Software-as-a-Service, Component

Relationships, and Vulnerability and Exploitability in Dependencies.

Legacy Software and Binary Analysis

The NTIA document also specifically notes that source code may not be available for all

legacy software. In those cases, only the object code available for SBOM generation and

binary analysis tools can be used to better understand the components and dependencies

in the software in question.

Emerging Software Supply Chain Concepts

NIST continues work on cybersecurity supply chain risk management and to update its

standards concerning the EO and the Secure Software Development Framework. Security

and development teams should expect NIST to build off the “minimum requirements” and

develop “Foundational, Sustaining, and Enhancing” recommendations for SBOM, Vendor

Risk Assessments, Open Source Software Controls, and Vulnerability Management

Practices. The requirements are expected to be “risk based”, with different requirements

based on the criticality of the software, the information it manages, and the threat

environment.

Operationalizing SBOMs
As previously noted, automation is required to produce accurate SBOM at scale. Early in
the SDLC this can include integration with development tools and issue tracking software.
Later in the development process, integration is required with build systems; vulnerability
management, and incident response. The most critical point of integration is just prior to
release or deployment of software and containers. This requires binary analysis.

NIST Software Supply Chain Security Guidance website illustrates how a SBOM
illustrates an example of how an SBOM may be assembled across the SDLC, shown below.
The pale green boxes follow software and components as they change over time. The
SBOM components of “Software as specified” and “Software as built” (where open-source
SCA tools have traditionally focused) can differ significantly from the SBOM components
of “Software as distributed”.

For example, a number of other items are often packaged with the software to assist with
installation: installer software, separate installation libraries, or even an entire container.
Vulnerabilities or tampering within these items can introduce the same security risks. The
SBOM created during the final build (i.e.“Software as built”) will not list these components,
leaving organizations blind to the risks.

“Software as distributed” – the binary and package – is the release that matters from a
security standpoint. Only binary analysis solutions can produce an accurate and complete
“as distributed” SBOM.

Additionally, complete and accurate SBOMs are valuable tools for determining the impact
of attacks like Solarwinds or components with newly discovered supply chain risks such
as the Apache log4j vulnerability. Binary analysis simplifies the effort in identifying all of
the transitive dependencies included, regardless of how deeply the components are
layered within the application.

04

Understanding
the Requirement for
Software Bills of Material
in Executive Order 14028

R E V E R S I N G L A B S
W H I T E P A P E R

https://en.wikipedia.org/wiki/Open_source_license_litigation
https://en.wikipedia.org/wiki/Open_source_license_litigation
https://www.prweb.com/releases/2017/03/prweb14114293.htm

The Attack on Software Supply Chain

In December 2020, FireEye researchers discovered “a supply chain attack trojanizing

SolarWinds Orion business software updates”. The backdoor in Orion – a platform for

centralized monitoring and management of IT infrastructure – allowed the attackers full

administrative access to Orion customers’ infrastructure. The attack affected over 100

private sector entities and at least 9 Federal agencies, including the Departments of

Defense, Commerce, Energy, Justice, Homeland Security, State, Treasure, and the National

Institute of Health.

While the SolarWinds attacks involved Russian nation state actors planting malicious code

in software updates, similar outcomes can result from exploiting vulnerabilities in widely

used applications. Attackers infiltrated the development environment and altered the

behavior of CodeCov, a software auditing tool for developers, to collect developer

credentials needed for the next stage of their attack. Four zero day vulnerabilities in

Microsoft Exchange Server provided attackers with the ability to steal sensitive

information, install malware, and insert backdoors on thousands of organizations.

Cybersecurity Executive Order 14028

While there have been growing concerns over the security of software used by the

government for years, the SolarWinds and Microsoft attacks prompted action. In May,

2021 the President issued an Executive Order (EO) on Improving the Nation’s

Cybersecurity. The order requires private sector organizations to "ensure its products are

built and operate securely, and partner with the Federal Government to foster a more

secure cyberspace.”

The EO requires the National Institute of Standards and Technology (NIST) to publish

standards for secure software development including criteria for secure software

development environments, using automated tools to identify vulnerabilities in code,

maintaining accurate and up-to-date data, provenance (i.e., origin) of software code or

components, and providing a Software Bill of Materials (SBOM) to purchasers of software.

Why the EO Includes SBOM Requirements
Awareness of a risk is fundamental to mitigating that risk. A Software Bill of Materials is a

listing of all components and dependencies in an application or system, including open

source and commercial components. Having a list of every software component and

dependency simplifies the effort of:

• Mapping known vulnerabilities to components to determine the level of risk

• Tracking down which software and suppliers are affected when a vulnerability like

Log4j occurs

• Pinpointing the location of suspicious software behavior changes, injected malware

and other indicators of software tampering

A 2021 study found that the average application included over 500 open source

components and that 84% of the applications included at least one vulnerable open source

component. The latter figure is not surprising, as thousands of new vulnerabilities are

disclosed in open source components each year.

A complete and accurate Software Bill of Materials is essential to provide vendors and

customers with visibility into the risk within an application or supply chain. Without insight

to vulnerable, malicious or compromised components, organizations cannot defend

against these attack vectors or adequately assess risk.

The Executive Order acknowledges risk in the supply chain from third-party components

and requires any organization providing software to the Federal Government to also provide

(or publish on a public website) a Software Bill of Materials. In response to this, other

secure development standards have also included SBOM requirements, including:

• NIST Special Publication 800-161 Rev1: Cybersecurity Supply Chain Risk

Management Practices for Systems and Organizations. The publication instructs

Federal Agencies and Departments to “Establish a governance capability for

managing and monitoring components of embedded software to manage risk

across the enterprise (e.g., SBOMs paired with criticality, vulnerability, threat,

and exploitability to make this more automated).” This governance is a

foundational practice, critical to successfully interacting with suppliers and

improving cybersecurity supply chain risk management.

• NIST Publication 800-218: Secure Software Development Framework (SSDF).

800-218 requires organizations to

- “Collect, maintain, and share provenance data for all components and other

dependencies of each software release (e.g., in a software bill of materials

[SBOM]).” (PS.3.2)

- Obtain provenance information (e.g., SBOM, source composition analysis,

binary software composition analysis) for each software component,

and analyze that information to better assess the risk that the component

may introduce. (PW.4.1)

- “Check code for backdoors and other malicious content” (PW.7.2)

In short, every software supplier to federal agencies now has two deliverables —

the software and a Software Bill of Materials.

How SBOM Have Evolved (Your old one may not be
sufficient)
SBOMs have been around for 20 years, at first coinciding with the growth and adoption of

open source software. When software developers first used open source components, the

primary concern was complying with sometimes confusing or limiting license agreements

that represented an intellectual property risk.

Open source can be issued under one of hundreds of licenses, or under no license at all.

Some licenses require developers to link to the code and others require that proper

attribution be provided. Some high-profile lawsuits and settlements related to violating

open source license obligations, including Free Software Foundation (FSF) vs Cisco in

2009 and CoKinetic Systems vs Panaso nic Avionics in 2017, provided the incentive

needed to adopt tools that could identify open source components from build manifests

and other development tooling and enumerate the licenses associated with them – with

appropriate policy definition and reporting so that legal and compliance teams could limit

licensing risks.

In contrast to what is now required under the Executive Order, organizations rarely – if ever

– shared SBOMs with their customers. They viewed the composition of their software as

their intellectual property. SBOM generation methods that grew out of those early

circumstances can struggle with the new shift in focus, where transparency into all parts of

the software, more insight into the release and distribution processes, and data sharing

across organizations are necessary for managing risk.

SBOM Generation Methodologies

Generating an SBOM manually is time consuming and inaccurate. Software development

teams using spreadsheets or shared documents rarely are aware of each component and

subcomponent used over the course of the development cycle, and versions can change

each day. The class of tools that automates creating an SBOM is known as Source

Composition Analysis (SCA).

The most common approach used by SCA to identify components is Manifest Parsing.

This works by interrogating build manifests and package managers during the build

process to identify which open source components have been declared by development as

required (“declared dependencies”). It then determines other “undeclared dependencies”

are required by listed components. Once the SBOM is complete, it maps the components

to databases of the licenses under which each component was published.

While this approach appears accurate (the components listed as required by development

are those listed in the SBOM), Manifest Parsing has several technical shortcomings

• Components statically linked or added directly to the code by developers will not

be declared by the manifest

• Imprecise declarations (e.g., “version 2 or higher”, “latest”) may generate the wrong

version number in the SBOM. Since vulnerabilities affect only specific versions, this

can lead to false positives and false negatives

• Components embedded within software containers are not part of a build manifest

• Manifest parsing is unusable with programming languages such as C and C++.

This can also make it impossible to automatically generate reliable SBOM for

legacy software.

The Future of SBOMs
As required by the Executive Order, the National Telecommunications and Information

Administration (NTIA) published The Minimum Elements For a Software Bill of Materials

in 2021. These include:

Minimum Elements
Data Fields

Document baseline information about each component that should be tracked: Supplier,

Component Name, Version of the Component, Other Unique Identifiers, Dependency

Relationship, Author of SBOM Data, and Timestamp.

Automation Support

Automatic generation and machine-readability to allow for scaling across the software

ecosystem. Data formats used to generate and consume SBOMs include SPDX,

CycloneDX, and SWID tags.

Practices and Processes

A number of items that focus on the mechanics of SBOM use should be addressed in

any policy, contract, or arrangement to ask for or provide SBOMs, including Frequency,

Depth, Known Unknowns, Distribution and Delivery, Access Control, and

Accommodation of Mistakes

Future Requirements
Additionally, the document provides a preview of how these “minimum requirements” may

evolve. This includes the potential future SBOM requirements for SBOM Integrity and

Authenticity, SBOM for Cloud-based Software and Software-as-a-Service, Component

Relationships, and Vulnerability and Exploitability in Dependencies.

Legacy Software and Binary Analysis

The NTIA document also specifically notes that source code may not be available for all

legacy software. In those cases, only the object code available for SBOM generation and

binary analysis tools can be used to better understand the components and dependencies

in the software in question.

Emerging Software Supply Chain Concepts

NIST continues work on cybersecurity supply chain risk management and to update its

standards concerning the EO and the Secure Software Development Framework. Security

and development teams should expect NIST to build off the “minimum requirements” and

develop “Foundational, Sustaining, and Enhancing” recommendations for SBOM, Vendor

Risk Assessments, Open Source Software Controls, and Vulnerability Management

Practices. The requirements are expected to be “risk based”, with different requirements

based on the criticality of the software, the information it manages, and the threat

environment.

Operationalizing SBOMs
As previously noted, automation is required to produce accurate SBOM at scale. Early in
the SDLC this can include integration with development tools and issue tracking software.
Later in the development process, integration is required with build systems; vulnerability
management, and incident response. The most critical point of integration is just prior to
release or deployment of software and containers. This requires binary analysis.

NIST Software Supply Chain Security Guidance website illustrates how a SBOM
illustrates an example of how an SBOM may be assembled across the SDLC, shown below.
The pale green boxes follow software and components as they change over time. The
SBOM components of “Software as specified” and “Software as built” (where open-source
SCA tools have traditionally focused) can differ significantly from the SBOM components
of “Software as distributed”.

For example, a number of other items are often packaged with the software to assist with
installation: installer software, separate installation libraries, or even an entire container.
Vulnerabilities or tampering within these items can introduce the same security risks. The
SBOM created during the final build (i.e.“Software as built”) will not list these components,
leaving organizations blind to the risks.

“Software as distributed” – the binary and package – is the release that matters from a
security standpoint. Only binary analysis solutions can produce an accurate and complete
“as distributed” SBOM.

Additionally, complete and accurate SBOMs are valuable tools for determining the impact
of attacks like Solarwinds or components with newly discovered supply chain risks such
as the Apache log4j vulnerability. Binary analysis simplifies the effort in identifying all of
the transitive dependencies included, regardless of how deeply the components are
layered within the application.

05

Understanding
the Requirement for
Software Bills of Material
in Executive Order 14028

R E V E R S I N G L A B S
W H I T E P A P E R

Typical SCA solutions cannot generate comprehensive SBOMs

Software Package Released to Customers

Outsourced Code File & Image
Archives

Statically Linked
ComponentsDeveloper Code Installer or Container

Components

Visible Developer Components

Visible Outsourced Components

Missing Components

Legend:

Legacy software’s older
code base, and its frequent
use in important parts of
critical infrastructure,
often makes transparency
more important, especially
for assessing risk from
known vulnerabilities.”

Department of Commerce

“The Minimum Elements for

an SBOM”

The Future of SBOMs
As required by the Executive Order, the National Telecommunications and Information

Administration (NTIA) published The Minimum Elements For a Software Bill of Materials

in 2021. These include:

Minimum Elements
Data Fields

Document baseline information about each component that should be tracked: Supplier,

Component Name, Version of the Component, Other Unique Identifiers, Dependency

Relationship, Author of SBOM Data, and Timestamp.

Automation Support

Automatic generation and machine-readability to allow for scaling across the software

ecosystem. Data formats used to generate and consume SBOMs include SPDX,

CycloneDX, and SWID tags.

Practices and Processes

A number of items that focus on the mechanics of SBOM use should be addressed in

any policy, contract, or arrangement to ask for or provide SBOMs, including Frequency,

Depth, Known Unknowns, Distribution and Delivery, Access Control, and

Accommodation of Mistakes

Future Requirements
Additionally, the document provides a preview of how these “minimum requirements” may

evolve. This includes the potential future SBOM requirements for SBOM Integrity and

Authenticity, SBOM for Cloud-based Software and Software-as-a-Service, Component

Relationships, and Vulnerability and Exploitability in Dependencies.

Legacy Software and Binary Analysis

The NTIA document also specifically notes that source code may not be available for all

legacy software. In those cases, only the object code available for SBOM generation and

binary analysis tools can be used to better understand the components and dependencies

in the software in question.

Emerging Software Supply Chain Concepts

NIST continues work on cybersecurity supply chain risk management and to update its

standards concerning the EO and the Secure Software Development Framework. Security

and development teams should expect NIST to build off the “minimum requirements” and

develop “Foundational, Sustaining, and Enhancing” recommendations for SBOM, Vendor

Risk Assessments, Open Source Software Controls, and Vulnerability Management

Practices. The requirements are expected to be “risk based”, with different requirements

based on the criticality of the software, the information it manages, and the threat

environment.

Operationalizing SBOMs
As previously noted, automation is required to produce accurate SBOM at scale. Early in
the SDLC this can include integration with development tools and issue tracking software.
Later in the development process, integration is required with build systems; vulnerability
management, and incident response. The most critical point of integration is just prior to
release or deployment of software and containers. This requires binary analysis.

NIST Software Supply Chain Security Guidance website illustrates how a SBOM
illustrates an example of how an SBOM may be assembled across the SDLC, shown below.
The pale green boxes follow software and components as they change over time. The
SBOM components of “Software as specified” and “Software as built” (where open-source
SCA tools have traditionally focused) can differ significantly from the SBOM components
of “Software as distributed”.

For example, a number of other items are often packaged with the software to assist with
installation: installer software, separate installation libraries, or even an entire container.
Vulnerabilities or tampering within these items can introduce the same security risks. The
SBOM created during the final build (i.e.“Software as built”) will not list these components,
leaving organizations blind to the risks.

“Software as distributed” – the binary and package – is the release that matters from a
security standpoint. Only binary analysis solutions can produce an accurate and complete
“as distributed” SBOM.

Additionally, complete and accurate SBOMs are valuable tools for determining the impact
of attacks like Solarwinds or components with newly discovered supply chain risks such
as the Apache log4j vulnerability. Binary analysis simplifies the effort in identifying all of
the transitive dependencies included, regardless of how deeply the components are
layered within the application.

06

Understanding
the Requirement for
Software Bills of Material
in Executive Order 14028

R E V E R S I N G L A B S
W H I T E P A P E R

https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom

The Future of SBOMs
As required by the Executive Order, the National Telecommunications and Information

Administration (NTIA) published The Minimum Elements For a Software Bill of Materials

in 2021. These include:

Minimum Elements
Data Fields

Document baseline information about each component that should be tracked: Supplier,

Component Name, Version of the Component, Other Unique Identifiers, Dependency

Relationship, Author of SBOM Data, and Timestamp.

Automation Support

Automatic generation and machine-readability to allow for scaling across the software

ecosystem. Data formats used to generate and consume SBOMs include SPDX,

CycloneDX, and SWID tags.

Practices and Processes

A number of items that focus on the mechanics of SBOM use should be addressed in

any policy, contract, or arrangement to ask for or provide SBOMs, including Frequency,

Depth, Known Unknowns, Distribution and Delivery, Access Control, and

Accommodation of Mistakes

Future Requirements
Additionally, the document provides a preview of how these “minimum requirements” may

evolve. This includes the potential future SBOM requirements for SBOM Integrity and

Authenticity, SBOM for Cloud-based Software and Software-as-a-Service, Component

Relationships, and Vulnerability and Exploitability in Dependencies.

Legacy Software and Binary Analysis

The NTIA document also specifically notes that source code may not be available for all

legacy software. In those cases, only the object code available for SBOM generation and

binary analysis tools can be used to better understand the components and dependencies

in the software in question.

Emerging Software Supply Chain Concepts

NIST continues work on cybersecurity supply chain risk management and to update its

standards concerning the EO and the Secure Software Development Framework. Security

and development teams should expect NIST to build off the “minimum requirements” and

develop “Foundational, Sustaining, and Enhancing” recommendations for SBOM, Vendor

Risk Assessments, Open Source Software Controls, and Vulnerability Management

Practices. The requirements are expected to be “risk based”, with different requirements

based on the criticality of the software, the information it manages, and the threat

environment.

Operationalizing SBOMs
As previously noted, automation is required to produce accurate SBOM at scale. Early in
the SDLC this can include integration with development tools and issue tracking software.
Later in the development process, integration is required with build systems; vulnerability
management, and incident response. The most critical point of integration is just prior to
release or deployment of software and containers. This requires binary analysis.

NIST Software Supply Chain Security Guidance website illustrates how a SBOM
illustrates an example of how an SBOM may be assembled across the SDLC, shown below.
The pale green boxes follow software and components as they change over time. The
SBOM components of “Software as specified” and “Software as built” (where open-source
SCA tools have traditionally focused) can differ significantly from the SBOM components
of “Software as distributed”.

For example, a number of other items are often packaged with the software to assist with
installation: installer software, separate installation libraries, or even an entire container.
Vulnerabilities or tampering within these items can introduce the same security risks. The
SBOM created during the final build (i.e.“Software as built”) will not list these components,
leaving organizations blind to the risks.

“Software as distributed” – the binary and package – is the release that matters from a
security standpoint. Only binary analysis solutions can produce an accurate and complete
“as distributed” SBOM.

Additionally, complete and accurate SBOMs are valuable tools for determining the impact
of attacks like Solarwinds or components with newly discovered supply chain risks such
as the Apache log4j vulnerability. Binary analysis simplifies the effort in identifying all of
the transitive dependencies included, regardless of how deeply the components are
layered within the application.

07

Understanding
the Requirement for
Software Bills of Material
in Executive Order 14028

R E V E R S I N G L A B S
W H I T E P A P E R

Software Life Cycle & Bill of Materials Assembly Line

Source: Software Security in Supply Chains: Software Bill of Materials (SBOM)

https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-software-1
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-security-supply-chains-software-1

The Future of SBOMs
As required by the Executive Order, the National Telecommunications and Information

Administration (NTIA) published The Minimum Elements For a Software Bill of Materials

in 2021. These include:

Minimum Elements
Data Fields

Document baseline information about each component that should be tracked: Supplier,

Component Name, Version of the Component, Other Unique Identifiers, Dependency

Relationship, Author of SBOM Data, and Timestamp.

Automation Support

Automatic generation and machine-readability to allow for scaling across the software

ecosystem. Data formats used to generate and consume SBOMs include SPDX,

CycloneDX, and SWID tags.

Practices and Processes

A number of items that focus on the mechanics of SBOM use should be addressed in

any policy, contract, or arrangement to ask for or provide SBOMs, including Frequency,

Depth, Known Unknowns, Distribution and Delivery, Access Control, and

Accommodation of Mistakes

Future Requirements
Additionally, the document provides a preview of how these “minimum requirements” may

evolve. This includes the potential future SBOM requirements for SBOM Integrity and

Authenticity, SBOM for Cloud-based Software and Software-as-a-Service, Component

Relationships, and Vulnerability and Exploitability in Dependencies.

Legacy Software and Binary Analysis

The NTIA document also specifically notes that source code may not be available for all

legacy software. In those cases, only the object code available for SBOM generation and

binary analysis tools can be used to better understand the components and dependencies

in the software in question.

Emerging Software Supply Chain Concepts

NIST continues work on cybersecurity supply chain risk management and to update its

standards concerning the EO and the Secure Software Development Framework. Security

and development teams should expect NIST to build off the “minimum requirements” and

develop “Foundational, Sustaining, and Enhancing” recommendations for SBOM, Vendor

Risk Assessments, Open Source Software Controls, and Vulnerability Management

Practices. The requirements are expected to be “risk based”, with different requirements

based on the criticality of the software, the information it manages, and the threat

environment.

Operationalizing SBOMs
As previously noted, automation is required to produce accurate SBOM at scale. Early in
the SDLC this can include integration with development tools and issue tracking software.
Later in the development process, integration is required with build systems; vulnerability
management, and incident response. The most critical point of integration is just prior to
release or deployment of software and containers. This requires binary analysis.

NIST Software Supply Chain Security Guidance website illustrates how a SBOM
illustrates an example of how an SBOM may be assembled across the SDLC, shown below.
The pale green boxes follow software and components as they change over time. The
SBOM components of “Software as specified” and “Software as built” (where open-source
SCA tools have traditionally focused) can differ significantly from the SBOM components
of “Software as distributed”.

For example, a number of other items are often packaged with the software to assist with
installation: installer software, separate installation libraries, or even an entire container.
Vulnerabilities or tampering within these items can introduce the same security risks. The
SBOM created during the final build (i.e.“Software as built”) will not list these components,
leaving organizations blind to the risks.

“Software as distributed” – the binary and package – is the release that matters from a
security standpoint. Only binary analysis solutions can produce an accurate and complete
“as distributed” SBOM.

Additionally, complete and accurate SBOMs are valuable tools for determining the impact
of attacks like Solarwinds or components with newly discovered supply chain risks such
as the Apache log4j vulnerability. Binary analysis simplifies the effort in identifying all of
the transitive dependencies included, regardless of how deeply the components are
layered within the application.

Making SBOMs Part of Daily Activity
Complying with the EO at scale requires organizations to operationalize generation

and review of SBOM information. At scale, this includes changes to people,

processes, and technology.

• People – The requirement for greater security (delivered in part by the SBOM) and

faster delivery cycles requires changes in team make up. DevSecOps adoption

integrates multiple technical teams to meet delivery schedules and

security/compliance requirements. Security no longer operates as a separate

entity. Instead, they assist product engineering by providing the appropriate

information in a timely manner.

• Processes – The EO is explicit in the need to track software components as they

change and vulnerabilities affecting them. Creating and maintaining an SBOM is

now a requirement. However, developers are still under great pressure to deliver

required functionality by a specific date and cannot be expected to manually track

every component in every application. At the same time, manual processes for

creating the SBOM and tracking vulnerabilities as they are disclosed are unreliable.

• Technology – Traditional security testing tools are unable to accurately identify

vulnerabilities in open source – even those that have been known about for years.

Using the development team’s list of “declared dependencies” in a build manifest

is simply automating an unreliable process. Signature-based solutions providing

“ground truth” SBOMs based on compiler output and continuous monitoring of

newly disclosed vulnerabilities and compromises mapped to production software

are better at meeting the requirements outlined in the EO.

What’s Needed Now

To meet the Executive Order and the demands of today’s high-velocity development

environments, organizations need a solution that integrates into the development team’s

existing tools; that creates accurate and complete SBOMs at scale; and that provides rapid

feedback on both security vulnerabilities and malicious code. It must also be capable of

supporting modern programming languages and older but still actively used server

applications built with legacy code .

ReversingLabs’ binary analysis technology provides scalability and speed across the

development lifecycle. ReversingLabs analyzes actual build output, providing “ground truth”

SBOMs including code added directly by developers rather than relying on “declared

dependencies” to identify components. The table below compares ReversingLabs’

approach to commercial SCA technologies across key factors.

08

Understanding
the Requirement for
Software Bills of Material
in Executive Order 14028

R E V E R S I N G L A B S
W H I T E P A P E R

The Future of SBOMs
As required by the Executive Order, the National Telecommunications and Information

Administration (NTIA) published The Minimum Elements For a Software Bill of Materials

in 2021. These include:

Minimum Elements
Data Fields

Document baseline information about each component that should be tracked: Supplier,

Component Name, Version of the Component, Other Unique Identifiers, Dependency

Relationship, Author of SBOM Data, and Timestamp.

Automation Support

Automatic generation and machine-readability to allow for scaling across the software

ecosystem. Data formats used to generate and consume SBOMs include SPDX,

CycloneDX, and SWID tags.

Practices and Processes

A number of items that focus on the mechanics of SBOM use should be addressed in

any policy, contract, or arrangement to ask for or provide SBOMs, including Frequency,

Depth, Known Unknowns, Distribution and Delivery, Access Control, and

Accommodation of Mistakes

Future Requirements
Additionally, the document provides a preview of how these “minimum requirements” may

evolve. This includes the potential future SBOM requirements for SBOM Integrity and

Authenticity, SBOM for Cloud-based Software and Software-as-a-Service, Component

Relationships, and Vulnerability and Exploitability in Dependencies.

Legacy Software and Binary Analysis

The NTIA document also specifically notes that source code may not be available for all

legacy software. In those cases, only the object code available for SBOM generation and

binary analysis tools can be used to better understand the components and dependencies

in the software in question.

Emerging Software Supply Chain Concepts

NIST continues work on cybersecurity supply chain risk management and to update its

standards concerning the EO and the Secure Software Development Framework. Security

and development teams should expect NIST to build off the “minimum requirements” and

develop “Foundational, Sustaining, and Enhancing” recommendations for SBOM, Vendor

Risk Assessments, Open Source Software Controls, and Vulnerability Management

Practices. The requirements are expected to be “risk based”, with different requirements

based on the criticality of the software, the information it manages, and the threat

environment.

Operationalizing SBOMs
As previously noted, automation is required to produce accurate SBOM at scale. Early in
the SDLC this can include integration with development tools and issue tracking software.
Later in the development process, integration is required with build systems; vulnerability
management, and incident response. The most critical point of integration is just prior to
release or deployment of software and containers. This requires binary analysis.

NIST Software Supply Chain Security Guidance website illustrates how a SBOM
illustrates an example of how an SBOM may be assembled across the SDLC, shown below.
The pale green boxes follow software and components as they change over time. The
SBOM components of “Software as specified” and “Software as built” (where open-source
SCA tools have traditionally focused) can differ significantly from the SBOM components
of “Software as distributed”.

For example, a number of other items are often packaged with the software to assist with
installation: installer software, separate installation libraries, or even an entire container.
Vulnerabilities or tampering within these items can introduce the same security risks. The
SBOM created during the final build (i.e.“Software as built”) will not list these components,
leaving organizations blind to the risks.

“Software as distributed” – the binary and package – is the release that matters from a
security standpoint. Only binary analysis solutions can produce an accurate and complete
“as distributed” SBOM.

Additionally, complete and accurate SBOMs are valuable tools for determining the impact
of attacks like Solarwinds or components with newly discovered supply chain risks such
as the Apache log4j vulnerability. Binary analysis simplifies the effort in identifying all of
the transitive dependencies included, regardless of how deeply the components are
layered within the application.

Making SBOMs Part of Daily Activity
Complying with the EO at scale requires organizations to operationalize generation

and review of SBOM information. At scale, this includes changes to people,

processes, and technology.

• People – The requirement for greater security (delivered in part by the SBOM) and

faster delivery cycles requires changes in team make up. DevSecOps adoption

integrates multiple technical teams to meet delivery schedules and

security/compliance requirements. Security no longer operates as a separate

entity. Instead, they assist product engineering by providing the appropriate

information in a timely manner.

• Processes – The EO is explicit in the need to track software components as they

change and vulnerabilities affecting them. Creating and maintaining an SBOM is

now a requirement. However, developers are still under great pressure to deliver

required functionality by a specific date and cannot be expected to manually track

every component in every application. At the same time, manual processes for

creating the SBOM and tracking vulnerabilities as they are disclosed are unreliable.

• Technology – Traditional security testing tools are unable to accurately identify

vulnerabilities in open source – even those that have been known about for years.

Using the development team’s list of “declared dependencies” in a build manifest

is simply automating an unreliable process. Signature-based solutions providing

“ground truth” SBOMs based on compiler output and continuous monitoring of

newly disclosed vulnerabilities and compromises mapped to production software

are better at meeting the requirements outlined in the EO.

SBOM Completeness Uncovers primary (top level) open
source dependencies

Uncovers primary and
subcomponent (nth level) open
source, third-party and statically
linked dependencies

Value Category Commercial SCA ReversingLabs

SDLC Integration Analysis during build phase

(SBOM will have long list of known
unknowns)

SBOM Accuracy Reports component data as
captured

Checks whether collected
component data matches actual
objects in the binary

Analysis during build, release and
deployment phases provides a more
complete picture of the SBOM and
software risk

Integrated Risk Analysis Identifies known vulnerabilities in
primary (top level) open source
components

Identifies known vulnerabilities in
primary and subcomponent (nth
level) opensource, third-party and
statically linked dependencies

Malicious Code Detection
(Counterfeit components, Hidden
functionality)

NA Integrated component risk scoring
based static analysis of components
to identify known vulnerabilities,
malware, backdoors, and counterfeit
software

What’s Needed Now

To meet the Executive Order and the demands of today’s high-velocity development

environments, organizations need a solution that integrates into the development team’s

existing tools; that creates accurate and complete SBOMs at scale; and that provides rapid

feedback on both security vulnerabilities and malicious code. It must also be capable of

supporting modern programming languages and older but still actively used server

applications built with legacy code .

ReversingLabs’ binary analysis technology provides scalability and speed across the

development lifecycle. ReversingLabs analyzes actual build output, providing “ground truth”

SBOMs including code added directly by developers rather than relying on “declared

dependencies” to identify components. The table below compares ReversingLabs’

approach to commercial SCA technologies across key factors.

09

Understanding
the Requirement for
Software Bills of Material
in Executive Order 14028

R E V E R S I N G L A B S
W H I T E P A P E R

The Future of SBOMs
As required by the Executive Order, the National Telecommunications and Information

Administration (NTIA) published The Minimum Elements For a Software Bill of Materials

in 2021. These include:

Minimum Elements
Data Fields

Document baseline information about each component that should be tracked: Supplier,

Component Name, Version of the Component, Other Unique Identifiers, Dependency

Relationship, Author of SBOM Data, and Timestamp.

Automation Support

Automatic generation and machine-readability to allow for scaling across the software

ecosystem. Data formats used to generate and consume SBOMs include SPDX,

CycloneDX, and SWID tags.

Practices and Processes

A number of items that focus on the mechanics of SBOM use should be addressed in

any policy, contract, or arrangement to ask for or provide SBOMs, including Frequency,

Depth, Known Unknowns, Distribution and Delivery, Access Control, and

Accommodation of Mistakes

Future Requirements
Additionally, the document provides a preview of how these “minimum requirements” may

evolve. This includes the potential future SBOM requirements for SBOM Integrity and

Authenticity, SBOM for Cloud-based Software and Software-as-a-Service, Component

Relationships, and Vulnerability and Exploitability in Dependencies.

Legacy Software and Binary Analysis

The NTIA document also specifically notes that source code may not be available for all

legacy software. In those cases, only the object code available for SBOM generation and

binary analysis tools can be used to better understand the components and dependencies

in the software in question.

Emerging Software Supply Chain Concepts

NIST continues work on cybersecurity supply chain risk management and to update its

standards concerning the EO and the Secure Software Development Framework. Security

and development teams should expect NIST to build off the “minimum requirements” and

develop “Foundational, Sustaining, and Enhancing” recommendations for SBOM, Vendor

Risk Assessments, Open Source Software Controls, and Vulnerability Management

Practices. The requirements are expected to be “risk based”, with different requirements

based on the criticality of the software, the information it manages, and the threat

environment.

Operationalizing SBOMs
As previously noted, automation is required to produce accurate SBOM at scale. Early in
the SDLC this can include integration with development tools and issue tracking software.
Later in the development process, integration is required with build systems; vulnerability
management, and incident response. The most critical point of integration is just prior to
release or deployment of software and containers. This requires binary analysis.

NIST Software Supply Chain Security Guidance website illustrates how a SBOM
illustrates an example of how an SBOM may be assembled across the SDLC, shown below.
The pale green boxes follow software and components as they change over time. The
SBOM components of “Software as specified” and “Software as built” (where open-source
SCA tools have traditionally focused) can differ significantly from the SBOM components
of “Software as distributed”.

For example, a number of other items are often packaged with the software to assist with
installation: installer software, separate installation libraries, or even an entire container.
Vulnerabilities or tampering within these items can introduce the same security risks. The
SBOM created during the final build (i.e.“Software as built”) will not list these components,
leaving organizations blind to the risks.

“Software as distributed” – the binary and package – is the release that matters from a
security standpoint. Only binary analysis solutions can produce an accurate and complete
“as distributed” SBOM.

Additionally, complete and accurate SBOMs are valuable tools for determining the impact
of attacks like Solarwinds or components with newly discovered supply chain risks such
as the Apache log4j vulnerability. Binary analysis simplifies the effort in identifying all of
the transitive dependencies included, regardless of how deeply the components are
layered within the application.

ReversingLabs Fills the Security Testing Gap
ReversingLabs fills the gap left by traditional security testing tools to secure the software

supply chain, reduce brand risk, and comply with the Executive Order on Cybersecurity.

ReversingLabs works on the compiled application, without needing source code access, to

find vulnerabilities, backdoors, suspicious behaviors, and malware that can be introduced

after the development process where static analysis scanners and Source Composition

Analysis tools operate. It quickly and carefully inspects every file in every component to

discover malicious code, Indicators of Compromise, and invalid or compromised

certificates. ReversingLabs provides:

• Independent verification of the software, including fourth (and nth)- party code

• An accurate Software Bill of Materials, including the presence of legitimate but

vulnerable components and counterfeit components

• Assurance that backdoors and suspicious behaviors have not been introduced by

compromised build servers within the vendor’s software engineering processes.

• Software quality assessment to identify issues such as exposed secrets,

incorrectly mitigated vulnerabilities, digital signing issues, etc.

10

Understanding
the Requirement for
Software Bills of Material
in Executive Order 14028

R E V E R S I N G L A B S
W H I T E P A P E R

The Future of SBOMs
As required by the Executive Order, the National Telecommunications and Information

Administration (NTIA) published The Minimum Elements For a Software Bill of Materials

in 2021. These include:

Minimum Elements
Data Fields

Document baseline information about each component that should be tracked: Supplier,

Component Name, Version of the Component, Other Unique Identifiers, Dependency

Relationship, Author of SBOM Data, and Timestamp.

Automation Support

Automatic generation and machine-readability to allow for scaling across the software

ecosystem. Data formats used to generate and consume SBOMs include SPDX,

CycloneDX, and SWID tags.

Practices and Processes

A number of items that focus on the mechanics of SBOM use should be addressed in

any policy, contract, or arrangement to ask for or provide SBOMs, including Frequency,

Depth, Known Unknowns, Distribution and Delivery, Access Control, and

Accommodation of Mistakes

Future Requirements
Additionally, the document provides a preview of how these “minimum requirements” may

evolve. This includes the potential future SBOM requirements for SBOM Integrity and

Authenticity, SBOM for Cloud-based Software and Software-as-a-Service, Component

Relationships, and Vulnerability and Exploitability in Dependencies.

Legacy Software and Binary Analysis

The NTIA document also specifically notes that source code may not be available for all

legacy software. In those cases, only the object code available for SBOM generation and

binary analysis tools can be used to better understand the components and dependencies

in the software in question.

Emerging Software Supply Chain Concepts

NIST continues work on cybersecurity supply chain risk management and to update its

standards concerning the EO and the Secure Software Development Framework. Security

and development teams should expect NIST to build off the “minimum requirements” and

develop “Foundational, Sustaining, and Enhancing” recommendations for SBOM, Vendor

Risk Assessments, Open Source Software Controls, and Vulnerability Management

Practices. The requirements are expected to be “risk based”, with different requirements

based on the criticality of the software, the information it manages, and the threat

environment.

Operationalizing SBOMs
As previously noted, automation is required to produce accurate SBOM at scale. Early in
the SDLC this can include integration with development tools and issue tracking software.
Later in the development process, integration is required with build systems; vulnerability
management, and incident response. The most critical point of integration is just prior to
release or deployment of software and containers. This requires binary analysis.

NIST Software Supply Chain Security Guidance website illustrates how a SBOM
illustrates an example of how an SBOM may be assembled across the SDLC, shown below.
The pale green boxes follow software and components as they change over time. The
SBOM components of “Software as specified” and “Software as built” (where open-source
SCA tools have traditionally focused) can differ significantly from the SBOM components
of “Software as distributed”.

For example, a number of other items are often packaged with the software to assist with
installation: installer software, separate installation libraries, or even an entire container.
Vulnerabilities or tampering within these items can introduce the same security risks. The
SBOM created during the final build (i.e.“Software as built”) will not list these components,
leaving organizations blind to the risks.

“Software as distributed” – the binary and package – is the release that matters from a
security standpoint. Only binary analysis solutions can produce an accurate and complete
“as distributed” SBOM.

Additionally, complete and accurate SBOMs are valuable tools for determining the impact
of attacks like Solarwinds or components with newly discovered supply chain risks such
as the Apache log4j vulnerability. Binary analysis simplifies the effort in identifying all of
the transitive dependencies included, regardless of how deeply the components are
layered within the application.

Watch our educational series Software Package

Deconstruction. Each episode will unpack, analyze, and

expose hidden risks inside SBOM components in some of

the largest most complex software packages.

Learn how ReversingLabs helps you see software

components and risks that others miss:

Learn more

Additional Resources:

GET A FREE SBOM
REPORT & ANALYSIS

Understand what is in your software,
get a free Software Bill of Materials
(SBOM) report & risk analysis now.

Copyright 2022 ReversingLabs. All rights reserved. ReversingLabs is the registered trademark of ReversingLabs US Inc.
All other product and company names mentioned are trademarks or registered trademarks of their respective owners.

Worldwide Sale:
+1.617.250.7518

sales@reversinglabs.com

https://www.reversinglabs.com/software-package-deconstruction-series
https://www.reversinglabs.com/software-package-deconstruction-series
https://www.reversinglabs.com/solutions/software-bill-of-materials-sbom
https://register.reversinglabs.com/free_softwarebillofmaterials

